CROSSTAB Example \#5

SUDAAN Statements and Results Illustrated

- Accounting for multiple imputation of variables
- Taylor series linearization method
- BRR method with Fay's adjustment
- SUBPOPX
- SETENV

Input Data Set(s): NHANES3.SAS7bdat

Example

Among adults aged 20 and older, use the NHANES III Multiply Imputed Dataset to estimate some descriptive statistics on the self-rating of health status and activity level compared to others.

Solution

This example uses data from the 1988-1994 NHANES III. NCHS and CDC have provided a Multiply Imputed Dataset constructed from these studies so that the user can compute estimates that account for the imputation of several key survey measures. The multiply imputed dataset and associated documentation can be obtained from the NCHS website.

The following CROSSTAB example was run in two parts. In the first run, the estimates were computed using the Taylor Series linearization method (Exhibit 1), and in the second run, the estimates were computed using the BRR method with Fay's adjustment (Exhibit 5). The appropriate BRR replicate weights, adjusted using Fay's method, can also be found on the multiply imputed dataset.

This example was run in SAS-Callable SUDAAN, and the SAS program and *.LST files are provided for each run.

Exhibit 1. SAS-Callable SUDAAN Code (DESIGN=WR)

```
options pagesize=70 linesize=80;
libname in "c:\903winbetatest\nhanes3";
proc format;
    value health 1="1=Excel"
                2="2=Very Good"
                        3="3=Good"
                        4="4=Fair"
                            5="5=Poor";
    value activ 1="1=More Active"
            2="2=Less Active"
    3="3=Same";
data mil; set in.nh3mil;
proc sort data=mi1; by sdpstra6 sdppsu6;
data mi2; set in.nh3mi2;
proc sort data=mi2; by sdpstra6 sdppsu6;
data mi3; set in.nh3mi3;
proc sort data=mi3; by sdpstra6 sdppsu6;
data mi4; set in.nh3mi4;
proc sort data=mi4; by sdpstra6 sdppsu6;
data mi5; set in.nh3mi5;
proc sort data=mi5; by sdpstra6 sdppsu6;
PROC CROSSTAB DATA=mil filetype=sas MI_COUNT=5 DESIGN=WR;
NEST SDPSTRA6 SDPPSU6 / MISSUNIT;
WEIGHT WTPFQX6;
SUBPOPX HSAGEIR >= 20;
CLASS HAB1MI HAT28MI;
TABLES HAB1MI*HAT28MI;
SETENV ROWWIDTH=8 LBLWIDTH=9 COLWIDTH=8 DECWIDTH=2;
PRINT NSUM="SampSize" COLPER="COL%" SECOL="SE COL%" ROWPER="ROW%" SEROW="SE ROW%"
    / NSUMFMT=F7.0;
rformat hab1mi health.;
rformat hat28mi activ.;
RTITLE "SELF RATING OF HEALTH STATUS vs. ACTIVITY"
    "VARIANCES CALCULATED USING TAYLOR LINEARIZATION (WR)";
RFOOTNOTE "NHANES-III MULTIPLY IMPUTED DATA, ADULTS (20+)";
```

In the example above (Exhibit 1), the SAS datasets NH3MI1-NH3MI5 are derived from the IMP1.DAT,...,IMP5.DAT files supplied with the NHANES III public use documentation for the multiply imputed dataset. This example uses the shortcut MI_COUNT $=5$ to indicate the five files that are used by SUDAAN. The output from this example is illustrated below (beginning with Exhibit 2).

Exhibit 2. First Page of SUDAAN Output (SAS *.LST File)

There are 18,825 adults ages 20 and older in each of the 5 multiply imputed datasets (Exhibit 2).

Exhibit 3. CLASS Variable Frequencies

```
Frequencies and Values for CLASS Variables
Results for Summary Over All Imputations
by: Self-rating of health status.
-
Self-rating
    of health
    status Frequency Value
----------------------------------------------
Ordered
    Position:
    1 2823.600 1=Excel
Ordered
    Position:
    2 4388.200 2=Very Good
Ordered
    Position:
    3 6741.000 3=Good
Ordered
    Position:
    4 3834.800 4=Fair
Ordered
    Position:
    5 1037.400 5=Poor
```


Exhibit 3. CLASS Variable Frequencies-cont.

```
Frequencies and Values for CLASS Variables
Results for Summary Over All Imputations
by: Compare own activity level to others.
--------------------------------------------------
Compare own
    activity
    level to
    others Frequency Value
-------------------------------------------------
Ordered
    Position:
    1 5938.200 1=More Active
Ordered
    Position:
    2 4275.000 2=Less Active
Ordered
    Position:
    3 8611.800 3=Same
```


In this example, the variable HAB1MI holds the multiply imputed response for "Would you say your health in general is excellent, very good, good, fair or poor?" and the variable HAT28MI holds the multiply imputed response for "Compared with most men/women your age, would you say that you are more active, less active or about the same?" These categorical variables were defined in CROSSTAB using the CLASS statement. The above "Frequency" output (Exhibit 3.represents the average frequency of these multiply imputed variables on the five NH3MI1-NH3MI5 datasets.

Exhibit 4. HAB1MI*HAT28MI Crosstabulation (DESIGN=WR)

The table displayed in Exhibit $\mathbf{4}$ is the summary over all imputations. This table shows, for example, that 47.28% of those adults who rated their health as "excellent" also believe that they are more active than other men/women their age. In comparison, only 12.97% of those adults who rated their health as "poor" also believe they are more active than other men/women their age. The standard errors of these statistics are 1.68 and 1.52 , respectively.

The following replicates the example above, but uses the BRR (with Fay Adjustment) method for computing the variances (Exhibit 5).

Exhibit 5. SAS-Callable SUDAAN Code (DESIGN=BRR)

```
options pagesize=70 linesize=80;
libname in "c:\903winbetatest\nhanes3";
proc format;
    value health 1="1=Excel"
        2="2=Very Good"
        3="3=Good"
        4="4=Fair"
        5="5=Poor";
    value activ 1="1=More Active"
    2="2=Less Active"
    3="3=Same";
data mil; set in.nh3mil;
proc sort data=mi1; by sdpstra6 sdppsu6;
data mi2; set in.nh3mi2;
proc sort data=mi2; by sdpstra6 sdppsu6;
data mi3; set in.nh3mi3;
proc sort data=mi3; by sdpstra6 sdppsu6;
data mi4; set in.nh3mi4;
proc sort data=mi4; by sdpstra6 sdppsu6;
data mi5; set in.nh3mi5;
proc sort data=mi5; by sdpstra6 sdppsu6;
PROC CROSSTAB DATA=mil filetype=sas MI_COUNT=5 DESIGN=BRR;
WEIGHT WTPFQX6;
REPWGT WTPQRP1-WTPQRP52 / ADJFAY=2.0408;
SUBPOPX HSAGEIR >= 20;
CLASS HAB1MI HAT28MI;
TABLES HAB1MI*HAT28MI;
SETENV ROWWIDTH=8 LBLWIDTH=9 COLWIDTH=8 DECWIDTH=2;
PRINT NSUM="SampSize" COLPER="COL%" SECOL="SE COL%" ROWPER="ROW%" SEROW="SE ROW%"
    / NSUMFMT=F7.0;
rformat hab1mi health.;
rformat hat28mi activ.;
RTITLE "SELF RATING OF HEALTH STATUS vs. ACTIVITY"
    "VARIANCES CALCULATED VIA REPLICATION (BRR) WITH FAY ADJUSTMENT";
RFOOTNOTE "NHANES-III MULTIPLY IMPUTED DATA, ADULTS (20+)";
```

Exhibit 6. First Page of SUDAAN Output (SAS *.LST File)

Exhibit 7. Class Variable Frequencies

Frequencies and Values for CLASS Variables Results for Summary Over All Imputations		
Self-rating of health status	Frequency	Value
Ordered Position: 1	2823.600	1 =Excel
Ordered Position: 2	4388.200	2=Very Good
Ordered Position: 3	6741.000	3=Good
Ordered Position: 4	3834.800	$4=$ Fair
Ordered Position: 5	1037.400	$5=$ Poor

Exhibit 7. Class Variable Frequencies-cont.

Frequencies and Values for CLASS Variables Results for Summary Over All Imputations by: Compare own activity level to others.			
Compare own activity level to others	Frequency		Value
Ordered Position: 1	5938.200	1=More	Active
Ordered Position: 2	4275.000	$2=$ Less	Active
Ordered Position: 3	8611.800		3=Same

Exhibit 8. HAB1MI*HAT28MI Crosstabulation (DESIGN=BRR)

The above table ($\boldsymbol{E x h i b i t} \boldsymbol{8}$) shows that the variance estimates computed using the BRR method are generally smaller than the variance estimates computed using the Taylor Series linearization method. This phenomenon is not true in general, and may be an indication that, for this particular example, the weight adjustments in the NHANES III data may actually be improving the precision of estimates.

